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Establishing the Reliability of Student Proficiency Classifications:
The Accuracy of Observed Classifications

R. Gene Hoffman
Lauress L. Wise

Human Resources Research Organization

Standards-based testing, which assigns students to a small number of discrete
performance categories, has become a popular mode of student assessment with the National
Assessment of Educational Progress and particularly with state school accountability programs.
In a variety of states, students' categorical scores are used to assess schools' performance, so
analysis of the potential for student classification errors is important for both students and
schools.

Classical test theory is based on the concept of a true score for each examinee, defined as
the expected or average score across an infinite number of repeated parallel tests. In most cases,
we have only a score from a single administration of the test in question. The difference between
this single observed score and the underlying true score is error. In this report, we are concerned
not just with the size of these errors, but with the impact of these errors on classifying students
into performance categories. Livingston and Lewis (1995) introduced the concepts of (1)
classification consistency, which is the likelihood that repeated assessment will yield the same
classification, and (2) classification accuracy, which is the likelihood that classification from an
observed score is in the same classification of the corresponding true score. Both consistency
and accuracy are often shown as a function of the true score, that is, different consistency or
accuracy values are estimated and plotted for different possible true scores. We would like to
introduce a somewhat different perspective. A teacher or parent is presented a student's observed
test score and may wonder about the likelihood that their student's true score is in a proficiency
classification that is the same or different from his/her observed score In this paper, we focus on
accuracy as a function of particular observed scores. Our question is whether a student's
unknown true score is likely be in the same category as the student's observed score. This
perspective is important because it expresses error in a meaningful way for individual students.
For need of a distinguishing term, we will refer to our perspective as a question about observed
score classification accuracy.

Observed scores are assumed to vary in lawful ways around theoretical true scores or
around domain scores with the variation calculated as the standard error of measurement (ae). In
traditional reliability and generalizability theory, a, is a simple function of reliability (r,t) and
total test variability (aT):

ae = a-r-4(1-rtt)

Error bands around estimated scores often accompany reports of students' test scores.
These error bands are typically based on an estimate of ae with the assumption that errors of

(1)
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measurement are normally distributed. This approach used to estimate error bands can also be
used to estimate traditional (true score) classification accuracy functions. For any given true
score, the conditional distribution of observed scores is modeled as a normal distribution and the
proportion of that distribution falling within the achievement category of the true score is taken
as the classification accuracy value for that true score. Note, however, that the distribution, of
true scores for a given observed score is not necessarily normal, it is typically skewed, with the
most likely true score being closer to the overall mean than the observed score. As a
consequence, this same approach cannot be used directly to estimate observed score
classification accuracy.

Item Response Theory (IRT) is a common scaling method that produces estimates of
standard errors of measurement that vary along the true ability scale (Lord & Novick, 1968;
Feldt & Brennan, 1989). Standard errors of measurement are conditioned on student ability,
tending to be smallest near the center of the distribution and increasing toward the extremes.
Estimates of conditional standard errors of measurement, i.e., 6(xl0), increase precision in
understanding the relationship between estimated scores and true scores. They also create a
complication for estimating classification accuracy. Observed score accuracy is based on the
distribution of true scores around observed scores, i.e., f(01x), whereas f(x10) represents the
opposite the distribution of observed scores around true scores.

Analytic Approach

A relatively straightforward solution for estimating observed score accuracy is available
by conceptualizing observed score accuracy as a probability problem and using Bayes' Theorem.

Bayes' Theorem, as applied to continuous variables, states that:

f(0)P(xile)
f(Oixi) = ,

where P(xj) = J P(40) f(0) dO and f(0) is the density function for the distribution of true scale
scores.

(2)

To simplify the computation in our proposed approach, true scores and observed scores
are treated as discrete variables. Observed scores, based on a finite number of items, are
necessarily discrete. When scoring is based on raw (number right) scores from n items, there are
a fixed number of possible scores even though the raw scores may be mapped onto a more
continuous scale. When more complex pattern scoring is used, the number of possible values is
greater, but still finite. For true scores, a set of score intervals can be used to define discrete
values. By using discrete values, the probability of different true scores, 0, for any given
observed score, xj, can be rewritten as

P(Oilxj) =
P(xj101)P(0;)

13(401)P(01)+P(402)P(02)+P(x;103)P(03)+...+P(40k)P(Ok)
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where xj = observed scale score at level j, and 0, = true ability at level i, with k levels of ability
included in the analysis.

For each 0,, the probability of obtaining a given xj, denoted P(xj10,), can be calculated
directly from the IRT item parameter estimates or estimated by using a(x10,) and assuming a
normal distribution of errors.

P(xj10,) is estimated for each of the combinations of possible observed scores and true
scores by first assuming that each discrete scale score includes a hypothetical range of scale
values from half of the distance to the next lower possible value to half the distance to the next
higher value, i.e.,

xj + _ xj + x0+
Score Range for xj = to

2 2
(4)

For each 0, and its associated a(x10;), the cumulative probability of scores within the
score range for xj can be calculated to estimate P(xjI0,), assuming a normal distribution of errors.

xi + x2
For the lowest score level, P(x110,) is calculated as the cumulative probability of , given 0,

and a(xj0i). For the highest score level, P(xki0,) is calculated as 1 minus the cumulative

2
+ xk

'
probability of

x k
given 0; and a(xI0,).

Equation 3 also requires a distribution for 0, in the form of P(01), for i = 1 to k. Note that
the true score distribution is not the same as the observed score distribution so the probability of
true scores in each interval cannot be estimated directly from observed probabilities. Instead, we
assume that true scores are normally distributed with variance given by at 2= axe

ae2, where ae
is the standard error from Equation 1 above. We can then estimate the proportion of this
distribution falling in each discrete score range.

Observed score accuracy is the idea that students with a given observed score, xj, could
have a true score in a proficiency category that is the same as or different from the level that
contains that xj. Thus, for any observed score, we can construct the probability that the true score
is in each of the category levels. These probabilities can be calculated as

P(0 is in proficiency category a, given xi)

= E pod )
i=m

where rn represents the lowest value of 0 for a, the target true score proficiency category, and
n represents the highest level of 0 for category a.

When the target proficiency category (as bounded by in and n) for possible true scores is
the same as the category for xj, then the sum of the conditional probabilities in Equation 5 gives
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the probability that a student's true score is in the same category that he/she has been assigned by
his/her observed score. This, then, is the probability that the student's observed classification is
correct. Likewise, when the target category for possible true scores is different from the
category containing xj, the probability results from Equation 5 estimates the chances that a
student's true category is different from his/her assigned category. By appropriately summing
probabilities, we can obtain estimates of the probabilities for true scores being in any higher
category, in any lower category, in the category one above the assigned category, in the category
one below the assigned category, etc.

In addition to student level accuracy, judgments about the classification efficiency of a
testing program as a whole depend on a system level estimate of the proportion of all students
expected to be classified in congruence with their (unknown) true scores. This can be calculated
by weighting the results of Equation (5) for each score level with the proportion of the sample
who receive that score, and then summing over all score levels. That is,

The proportion of all students expected to be accurately classified =

b n Freqj
jI=a Ei=/m (Poo') * Total of All Students )1'

when the category boundaries a = m and b = n. Proportions of misclassification can be
calculated by setting a and b and m and n to reference different categories.

(6)

Figures A and B in the appendix provide visual representations of Equations 3 through 6.

An illustration

To illustrate the computations described above, a limited set of test items was retrieved
from a state-wide exam. Specifically, for 3000 students, 16 multiple-choice mathematics items
were scaled using Multilog's (Thissen, 1991)three-parameter logistic (3PL) option. Table 1
shows the item parameter estimates for each of the 16 items. Students were then scored with
Multilog, producing estimated thetas (observed scores) and standard errors of measurement for
each student. In order to display the data, the range of the student scores was divided into 15
equally spaced scores. Standard errors for each of these 15 scores were estimated by a simple
least squares cubic function predicting individual SEMs from polynomials of theta (R2 = .997).
Cronbach's alpha for these 16 items is .73.

In other work, that is not yet released, we have conducted similar analyses with
operational test data, including multiple choice and constructed response item that had been
scaled and scored with CTB's PARDUX and FLUX programs (Burkett, 1995). In this program,
raw scores (total correct with 72 points possible) are computed and converted to scale scores
using the inverse of the test characteristic function. The test characteristic function gives the
expected raw score as a function of the true score. We also used the IRT model to compute exact
probabilities for every possible raw score for each of the discrete true score values. The pattern
of results was similar to those described below.
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Table 1
3PL Item Parameters for Sample Data
Item Number a b c

1 0.56 -0.47 0.27
2 1.44 0.00 0.21
3 1.15 1.14 0.24
4 0.41 -0.85 0.27
5 0.96 -0.55 0.15
6 0.62 -0.22 0.10
7 1.26 0.85 0.35
8 0.68 0.97 0.18
9 0.79 0.09 0.19

10 1.19 0.52 0.19
11 0.74 1.16 0.35
12 1.14 0.25 0.11

13 1.15 0.22 0.09
14 0.73 0.34 0.13
15 0.50 1.17 0.30
16 0.47 -0.71 0.16

Table 2 presents example estimates for Prob(xj10;), the probability of different observed
scores for different ranges of true scores. Rows in the table represent true scores, 0. At each 0
level, a(xI0,) is presented. Columns in the table represent observed scale scores. Four
proficiency categories were created with cut points arbitrarily set to represent relatively high
standards at the top two categories. Bold numbers in the tables indicate probabilities for
observed scores being in the same score interval as the true score. As expected, the highest
probabilities in any row typically occurs when the observed scores matches 0. On the other
hand, there is marked departure from that expectation in the extremes where a(x10) is large and
the observed distribution is truncated. In addition, none of the probabilities are particularly large.
Note that these scale score probabilities do sum to 1.00 across each 0 row.

Table 2
Probability of Different Observed Scores for Given True Scores: Prob(x;10) *

True
Score

Observed Score xi
Category 1 Category 2 Category 3 Category 4

A a(x10) -4.0 -3.5 -3.0 -2.6 -2.1 -1.6 -1.1 -0.6 -0.1 0.3 0.8 1.3 1.8 2.3 2.8
-4.0 5.9 0.52 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.14
-3.5 4.5 0.48 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.09
-3.0 3.4 0.42 0.06 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.05
-2.6 2.5 0.32 0.07 0.08 0.08 0.08 0.07 0.06 0.06 0.05 0.04 0.03 0.02 0.02 0.01 0.02
-2.1 1.8 0.17 0.08 0.09 0.10 0.11 0.10 0.09 0.08 0.06 0.04 0.03 0.02 0.01 0.01 0.01
-1.6 1.2 0.04 0.05 0.08 0.11 0.14 0.15 0.14 0.11 0.08 0.05 0.02 0.01 0.00 0.00 0.00
-1.1 0.9 0.00 0.00 0.02 0.06 0.12 0.19 0.22 0.19 0.12 0.06 0.02 0.00 0.00 0.00 0.00
-0.6 0.6 0.00 0.00 0.00 0.00 0.02 0.09 0.23 0.31 0.23 0.09 0.02 0.00 0.00 0.00 0.00
-0.1 0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.24 0.40 0.24 0.05 0.00 0.00 0.00 0.00
0.3 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.24 0.43 0.24 0.04 0.00 0.00 0.00
0.8 0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.24 0.40 0.24 0.05 0.00 0.00
1.3 0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.08 0.24 0.34 0.24 0.08 0.01
1.8 0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.10 0.22 0.28 0.22 0.14
2.3 0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.12 0.20 0.23 0.38
2.8 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.07 0.12 0.17 0.60

*i = rows of the table, and j = columns.
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The usual classification accuracy function (Livingston & Lewis, 1995) can be derived
from this table by summing the probabilities within the target (and nontarget) categories for each
true score. Figure 1 plots values for this accuracy function.

-4.00 -2.00 0.00 2.00

True Score

Figure 1. Classification accuracy as a function of true scores.

4.00

Table 3 presents Bayes' estimates for P(0,Ixj) with the 0 probabilities summing to 1.00 for
each possible observed scale value (i.e, each column). Shaded regions show areas of congruence
between observed score categories and potential true score categories. Bold numbers indicate
the probability that the unknown true score is in the same score interval as the observed score.
Summing the P(0,Ixj) for the shaded area within each column (i.e. applying Equation 5) provides
our estimate of observed score classification accuracy. These are presented in the last row of the
table. Again, these accuracy values indicate probabilities that a student's unknown true score is
in the same classification category as their known observed score. For example, a student with a
observed score in the 0.6 score interval and classified at proficiency level 2 has only a 37%
chance that his/her true score is in that same score interval, but has a 93% chance that his/her
true score is also in proficiency level 2. Note that for students with a number of the observed
score values (e.g., -2.1, 2.3), the chances that their true scores are in an adjacent category are
greater than the chances are that their true scores are in the congruent category.
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Table 3
Bayes' Estimates of the p(ai ObS) for all combinations of O and ObS; and cumulative errors

True
Score

Observed Scale Score, ObS
Category I Category 2 Category 3 Category 4

0, -4.0 -3.5 -3.0 -2.6 -2.1 -1.6 -1.1 -0.6 -0.1 0.3 0.8 1.3 1.81 2.3 2.8
-4.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.001 0.00 0.00 0.001 0.00 0.001
-3.5 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.001 0.00 0.00 0.001 0,00 0.001
-3.0 0.09 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.001 0.00 0.011
-2.6 0.25 0.10 0.06 0.04 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.001 0.00 0.011
-2.1 0.40 0.32 0.23 0.15 0.09 0.05 0.03 0.01 0.01 0.01 0.00 0.01 0.011 0.01 0.011
-1.6 0.23 0.47 0.47 0.40 0.29 0.18 0.10 0.05 0.02 0.01 0.01 0.01 0.01! 0.00 0.001
-1.1 0.01 0.09 0.21 0.37 0.47 0.42 0.29 0.15 0.07 0.03 0.01 0.01 0.001 U.00 0.001
-0.6 0.00 0.00 0.00 0.02 0.12 0.31 0.45 0.37 0.20 0.08 0.02 0.00 0.001 0.00 0.001
-0.1 0.00 0.00 0.00 0.00 0.00 0.02 0.13 0.35 0.41 0.24 0.07 0.01 0.001 0.00 0.001
0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.24 0.41 0.31 0.09 0.011 0.00 0.001
0.8 0.00 0.00 0.00 0.00 0.00 0.001 0.00 0.00 0.04 0.18 0.39 0.40 0.17 0.03 0.00
1.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.14 0.34 0.46 0.31 0.07!
1.8 0.00 0.00 0.00 0.00 0.00 0.001 0.00 0.00 0.00 0.01 0.03 0.11 0.26 0 42 0.34:
2.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.071 0.17 0.35
2.8 0.00 0.00 0.00 0.00 0.00 0.001 0.00 0.00 0.00 0.00 0.00 0 00 0.021 0.05 0.22

Observed
Score

Accuracy
0.99 0.91 0.78 0.60 0.41 0.25 0.87 0.93 0.92 0.76 0.56 0.85 0.89 0.22 0.57'

Figure 2 illustrates the observed score classification accuracy for each score level from
the last row of Table 3. The effects of the cut points are clear from the dips in the plot, and again
it is clear that for some scores that odds are less than 50-50 of the true score being in the same
classification as the observed score.

10

08

>,
6.) 0.6
Iv

z
c.)
u 0.4

0.2

0.0
-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

Observed Score

Figure 2. Probability that true achievement is in the same proficiency
level assigned from observed test performance.
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Table 4 shows true score classification probabilities for each observed score with
congruent classifications in bold.

Table 4
Probability of true score being in any category given an observed score

Possible
Category for

0

Observed Scale Score
Category 1 Category 2 Category 3 Category 4

-4.0 -3.5 -3.0 -2.6 -2.1 -1.6 -1.1 -0.6 -0.1 0.3 0.8 1.3 1.8 2.3 2.8

Category 1 0.99 0.91 0.78 0.60 0.41 0.25 0.13 0.07 0.03 0.02 0.02 0.02 0.02 0.02 0.03
Category 2 0.01 0.09 0.22 0.40 0.59 0.75 0.87 0.93 0.92 0.76 0.42 0.11 0.01 0.00 0.00
Category 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.22 0.56 0.85 0.89 0.76 0.40
Category 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.09 0.22 0.57

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: Bold numbers indicate probabilities that true score is in the same classification as the assigned
score

Equation 6 was then applied to the data in Table 3 to obtain expected proportions of
students accurately classified. Tables 5 and 6 present the results in two steps. In Table 5, we
present proportions by assigned category. In Table 6, we present the proportions across all
students. Marginal values in Table 6 show the proportion of students actually assigned to each
level, and the proportions of students expected to fall in each category. Note that the proportion
of students in the extreme categories is overestimated when observed scores are used in place of
true scores (.11 versus .08 and .04 versus in the lowest category and .02 in the highest category).

The sum of the bold values in Table 6 indicate total system accuracy. In this illustration,
approximately 76% of the students would be expected to have true classifications equivalent to
their observed classifications. In looking at classification accuracy for different observed scores,
the most striking result is that students classified in the extreme categories (1 and 4) are more
likely to have true scores in adjacent categories.

Table 5
Expected Proportions of Students within Each Assigned Score Categories who Would be
Expected to have True Scores in Each Category

Possible
Category for
True Score

Category for Assigned Score
Category 1 Category 2 Category 3 Category 4

Category 1 0.46 0.05 0.02 0.02
Category 2 0.54 0.86 0.26 0.00
Category 3 0.00 0.08 0.70 0.64
Category 4 0.00 0.00 0.03 0.34

Total 1.00 1.00 1.00 1.00
Note: Bold numbers indicate the proportion of students within each category whose true score would e
expected to fall in the same category as their observed score.
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Table 6
Expected Proportions of Students Across All Categories who Would be Expected to have True
Scores in Each Category

Possible Category
for True Score

Category for Assigned Score Expected true
proportion of students
in each category

Category 1 Category 2 Category 3 Category 4
Category 1 0.05 0.03 0.00 0.00 0.08
Category 2 0.06 0.51 0.07 0.00 0.64
Category 3 0.00 0.05 0.19 0.02 0.26
Category 4 0.00 0.00 0.01 0.01 0.02

Total assigned in
each category 0.11 0.59 0.27 0.04 1.00

Note: Bold numbers indicate the proportion of all students whose true score would be expected to fall in
the same category as their observed score.

Discussion and Further Exploration

The primary conclusion of this paper is that classification accuracy functions based on
observed scores (Figure 2 in the example) look quite different from accuracy functions based on
true scores (Figure 1). The pattern of results is initially surprising in that for some of the
observed scores, the most likely true score is in an adjacent classification category. Clearly as
numerous states and districts consider and implement high-stakes tests for students, this result is
of concern. This finding led us to a further exploration of how observed scores are placed on the
true score scale and/or whether using the same cut-points for true and observed scores is the best
approach.

Because of error, observed score
variance is greater than true score variance.
We assumed a true score standard
deviation of 1 in the IRT estimation, and
the standard deviation of the observed
scores (estimated thetas) was 1.15,
consistent with a reliability estimate of .75.
So, a person with a true score one standard
deviation above the mean would have a
true score of 1.0, while a person with an
observed score one standard deviation
above the mean would be at 1.15. One
alternative to the procedure for assigning
scale scores used above, would be to divide
all of the observed scores by 1.15 so that
the observed score variance was the same
as the true score variance. The result,

10
0

0.8

065

8 i 0.4<
1:7

02
cn
.0

00
-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4 0

Variance Adjusted Observed Score

Figure 3. Classification accuracy of variance
adjusted observed scores.
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shown in Figure 3, reduces but does not eliminate the lower than 50-50 odds of (modified)
observed score classification accuracy near the cut points.

Another solution is to use the results in Table 2 to adjust cut scores. It is important to
recognize that, depending on standard setting method, cut scores may be set in the observed
score metric or on the true score metric. For example, the Bookmark approach which orders
items on IRT parameters appears to set standards in the true score metric, while an approach like
Contrasting Groups uses the observed score metric. For illustration, we adjusted boundaries on
the observed score scale so that for each observed score the most likely true score is always
included in the congruent proficiency category. In other words, in Table 2, the observed score
boundary between Categories 1 and 2
was moved to bisect the observed
scores of-2.6 and -2.1. As a result, 10

the observed score -2.1 is now is
Performance Category 2 which is 0.8

congruent with its the most probable
0.6

true score (-1.1 at 47%). Likewise,
the boundary between Categories 3 y 0.4
and 4 was moved one column to the
right. The results of this adjustment 0.2

are presented in Figure 4 where we
see that the lowest accuracy value is

0.0
4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4 0

now above 50%. With these Observed Score
boundary adjustment, all students are
most likely to have a true score in the Figure 4. Accuracy of assigned classification after
category congruent with their cut points adjusted.
observed scores than in another
category.

-J
>,

43 0

7
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Figure 5. True score accuracy after cut point
boundaries are shifted on the observed score scale.
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Figure 5 shows the results of
from the perspective of Livingston
and Lewis's classification accuracy
after the cutpoints were adjusted. By
adjusting observed score boundaries
to improve observed score
classification accuracy, we reduce
true score classification accuracy near
the cutpoints (compare Figures 1 and
4). Another key difference associated
with moving the cut-points is in the
estimates of the proportion of
students in each performance
category. Table 7 shows the
classification matrix along with the
marginal proportion of students in
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each achievement category after the observed score cutpoints were moved. In improving
classification accuracy for individual scores, we are reducing the accuracy with which the overall
proportion of students at each level is estimated.

Table 7
Expected Proportions of Students Across All Categories who Would be Expected to have True
Scores in Each Category After Observed Score Boundaries are Adjusted

Possible Category
for True Score

Category for Assigned Score Expected true
proportion of students
in each category

Category 1 Category 2 Category 3 Category 4
Category 1 0.026 0.054 0.005 0.000 0.085
Category 2 0.008 0.558 0.070 0.000 0.636
Category 3 0.000 0.048 0.208 0.005 0.261
Category 4 0.000 0.000 0.004 0.007 0.012

Total assigned in
each category

0.034 0.661 0.295 0.012 1.002

Note: Bold numbers indicate the proportion of all students whose true score would be expected to fall in
the same category as their observed score.

Our overall conclusion is that there is no way, short of a perfectly reliable test, of
simultaneously maximizing observed score classification accuracy and the accuracy with which
overall population distributions are estimated. Nonetheless, observed score classification
accuracy curves do provide information about individual observed scores that is quite useful.
Further, these curves provide a way of illustrating the consequences of particular decisions about
the scaling and equating of performance category cutscores.
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